Solution 8

1. Let f be continuously differentiable on $[a, b]$. Show that it has a differentiable inverse if and only if its derivative is either positive or negative everywhere. This is 2060 stuff.
Solution. \Rightarrow. Let g be the inverse of f. When g is differentiable, we can use the chain rule in the relation $g(f(x))=x$ to get $g^{\prime}(f(x)) f^{\prime}(x)=1$, which implies that $f^{\prime}(x)$ never vanishes. Since f^{\prime} is continuous, if $f^{\prime}\left(x_{0}\right)>0$ at some x_{0}, we claim f^{\prime} is positive everywhere. Suppose $f^{\prime}\left(x_{1}\right)<0$ at some x_{1}, by continuity $f^{\prime}\left(x_{2}\right)=0$ at some x_{2} between x_{0} and x_{1}, contradiction holds. Hence f^{\prime} is positive everywhere. Similarly, it is negative everywhere when it is negative at some point.
\Leftarrow. Let us assume f^{\prime} is always positive (the other case can be treated similarly.) Let $x<y$ in $[a, b]$. By the mean value theorem, there is some $z \in(x, y)$ such that $f(y)-$ $f(x)=f^{\prime}(z)(y-x)>0$, so f is strictly increasing. According to an old result in 2050, a continuous, strictly increasing function maps $[a, b]$ to the interval $[f(a), f(b)]$ and its inverse g is continuous. Then we can use the Carathedory Criterion in 2060 to show that g is differentiable and, in fact, satisfies $g^{\prime}(f(x))=1 / f^{\prime}(x)$.
2. Consider the function

$$
f(x)=\frac{1}{2} x+x^{2} \sin \frac{1}{x}, \quad x \neq 0
$$

and set $f(0)=0$. Show that f is differentiable at 0 with $f^{\prime}(0)=1 / 2$ but it has no local inverse at 0 . Does it contradict the inverse function theorem?

Solution. $|f(x)-f(0)-(1 / 2) x|=\left|x^{2} \sin (1 / x)\right|=O\left(x^{2}\right)$, hence f is differentiable at 0 with $f^{\prime}(0)=1 / 2$. Let $x_{k}=1 / 2 k \pi, y_{k}=1 /(2 k \pi+1)$, then $f^{\prime}\left(x_{k}\right)=-1 / 2, f^{\prime}\left(y_{k}\right)=3 / 2$. Then it is clear that f is not injective in $I_{k}=\left(y_{k}, x_{k}\right)$. Since any neighborhood of 0 must include contain some I_{k}, this shows that f it has no local inverse at 0 . It does not contradict the inverse function theorem because f^{\prime} is not continuous at 0 .

Note. This problem shows that the C^{1}-condition is needed in the Inverse Function Theorem.
3. Study the map on \mathbb{R}^{2} given $(x, y) \mapsto\left(x^{2}-y^{2}, 2 x y\right)$. Show that it is local invertible everywhere except at the origin. Does its inverse exist globally?

Solution. In terms of complex notation, the map is simply $F(z)=z^{2}$. Its inverse is $G(z)=z^{1 / 2}$. The preimage of F contains two points $\sqrt{r} e^{i \theta / 2}$ and $-\sqrt{r} e^{i \theta / 2}$ where $z=$ $r e^{i \theta}, \theta \in[0,2 \pi)$.
4. Consider the mapping from \mathbb{R}^{2} to itself given by $f(x, y)=x-x^{2}, g(x, y)=y+x y$. Show that it has a local inverse at $(0,0)$. And then write down the inverse map so that its domain can be described explicitly.

Solution. Let $u=x-x^{2}, v=y+x y$. The Jacobian determinant is 1 at $(0,0)$ so there is an inverse in some open set containing $(0,0)$. Now we can describe it explicitly as follows. From the first equation we have

$$
x=\frac{1 \pm \sqrt{1-4 u}}{2} .
$$

From $u(0,0)=0$ we must have

$$
x=\frac{1-\sqrt{1-4 u}}{2}
$$

Then

$$
y=\frac{v}{1+x}=\frac{2 v}{3-\sqrt{1-4 u}}
$$

We see that the largest domain in which the inverse exists is $\{(u, v): u \in(-2,1 / 4), v \in \mathbb{R}\}$.
5. Let F be a continuously differentiable map from the open $U \subset \mathbb{R}^{n}$ to \mathbb{R}^{n} whose Jacobian determinant is non-vanishing everywhere. Prove that it maps every open set in U to an open set, that is, F is an open map. Does its inverse $F^{-1}: F(U) \rightarrow U$ always exist?

Solution. Let E be an open set in U. We need to show that $F(E)$ is open. Let $y_{0} \in F(E)$ and $x_{0} \in E$ satisfy $F\left(x_{0}\right)=y_{0}$. By the Inverse Function Theorem (applied to $F: E \rightarrow$ \mathbb{R}^{n}), there are open sets V (in E) and W containing x_{0} and y_{0} respectively such that $F(V)=W$. In particular, $W \subset F(E)$. Since W is open and contains y_{0}, there is some $B_{r}\left(y_{0}\right) \subset W \subset F(E)$, so $F(E)$ is open.

The inverse may not exist. Consider the map $(r, \theta) \rightarrow(r \cos \theta, r \sin \theta)$ in $(r, \theta) \in(0, \infty) \times \mathbb{R}$, whose Jacobian determinant is always nonzero. However, it has no inverse.
6. Consider the function

$$
h(x, y)=\left(x-y^{2}\right)\left(x-3 y^{2}\right), \quad(x, y) \in \mathbb{R}^{2}
$$

Show that the set $\{(x, y): h(x, y)=0\}$ cannot be expressed as a local graph of a $C^{1}-$ function over the x or y-axis near the origin. Explain why the Implicit Function Theorem is not applicable.

Solution. The Jacobian matrix of h is singular at $(0,0)$, hence the Implicit Function Theorem cannot apply. Indeed, $h(x, y)=0$ means either $x-y^{2}=0$ or $x-3 y^{2}=0$. The solution set of $\{(x, y): h(x, y)=0\}$ consisting of two different parabolas passing the origin.
7. Consider a real polynomial $p(x, \mathbf{a})=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ as a function of x and its coefficients. A point x_{0} is a simple root of p if $p\left(x_{0}, \mathbf{a}\right)=0$ and $p^{\prime}\left(x_{0}, \mathbf{a}\right) \neq 0$ where $\mathbf{a}=\left(a_{0}, a_{1}, \cdots, a_{n}\right)$. Let x_{0} be a simple of $p\left(\cdot, \mathbf{a}_{0}\right)$. Show that there is a smooth function φ defined in an open set in \mathbb{R}^{n+1} containing \mathbf{a}_{0} such that $x=\varphi(\mathbf{a})$ is a simple root for $p(\cdot, \mathbf{a})=0$. What happens when root is not simple?
Solution. This is a straightforward application of the Implicit Function Theorem. Consider the quadratic equation $a x^{2}+b x+c=0$ whose solutions are given by $(-b \pm$ $\left.\sqrt{b^{2}-4 a c}\right) / 2 a$. The root is not simple when $b^{2}-4 a c=0$. When the coefficients vary, the roots could be simple, not simple and imaginary. Therefore its inverse does not exist locally.

